RADIATION PROTECTION FOR THE ENVIRONMENTAL HEALTH SPECIALIST

Facts

Radiation:

- The shedding of extra energy from a radioisotope or radionuclide
- Energy emitted in the form of waves or particles
 - Waves=Gamma or X-Rays
 - Particles=Alpha, Beta, Neutrons

Energy Spectrum:

- High energy
 - Short wavelength
 - High frequency
- Low energy
 - Long wavelength
 - o Low frequency

lonizing:

- Higher energy EM waves or particles (can pull electron from orbit)
- Alpha
 - o Occurs from unstable nuclei w/too many protons & neutrons
 - o Positively charged
 - Straight-line paths w/high energy along path & *burst* of ionization at end
- Beta (a.k.a., negatrons and positrons)
 - Occurs from unstable nuclei w/too many neutrons
 - Decay by emission of negative beta particles (negatron)
 - o Electron ejected from a radioactive nucleus that is neutron-rich
 - Negatrons are negatively charged
 - More penetrating than alphas, but dependent upon energy
 - o Best shielding: low Z-number materials (plastic, cardboard, Plexiglas, wood)
 - Do NOT use high Z-number materials w/high-energy beta emitters or it will result in *bremsstrahlung* breaking radiation (a.k.a, x-rays)
- Gamma
 - Packets of pure energy (*electromagnetic radiation*)
 - o Higher in energy and more penetrating than alpha or beta
 - Photons (excess energy) emitted from unstable nuclei
 - Only difference between x-rays and gamma rays are their origin
 - Gamma rays originate from within the nucleus
 - X-rays originate from *outside* the nucleus
 - o No mass
 - No electric charge
 - Low specific ionization (SI) and low linear energy transfer (LET)
- Neutron
 - o Indirectly ionizing radiation
 - o No charge

- Can be more penetrating than gamma (depending on medium)
- Activation can occur
- o Best shielding: hydrogen products (e.g., water, paraffin, wax, concrete)
- Damage due to ionizing radiation
 - At cell or subcellular level
 - o Interaction is within cell itself or DNA of the cell
 - Subcellular components could be affected
 - Damage is repairable
 - Apoptosis (cell death) can occur, which is a natural event

Non-Ionizing:

- Lower energy EM waves or particles (can excite electron, but not pull from orbit)
- Examples: visible light, RF, ultrasound

Sources of Natural Background Radiation:

- Cosmic
 - Origin in space
 - Protons
 - Alpha particles
 - Assorted atomic nuclei
- Cosmogenic
 - Produced by action of cosmic radiation in atmospheric gas atoms
 - Major contributors are Hydrogen and Beryllium
- Terrestrial
 - o Results from presence of primordial radionuclides and their decay products
 - o Radium, Radon, Thorium, Actinium
- Irradiation (exposure) is the process of exposing an individual to radiation.

Contamination:

- The spread of radioactive materials to places where it should not be
- Two types
 - External
 - On skin surfaces or clothing
 - Almost all can be removed by removing clothing
 - o Internal
 - Ingestion, inhalation, absorption (open cuts/wounds)

Safety:

- Time (less time near means less exposure)
- Distance (inverse square law...increase distance between you and source)
- Appropriate shielding
 - Do NOT use Pb with high-energy beta due to x-ray production
 - Do NOT use thin Pb with high-energy gamma due to scattering
 - Good shielding for high-energy particles are *low Z-number* materials

- Wood, Plexiglas, cardboard, particleboard
- Good shielding for photon radiation (x-rays, gamma rays) are sufficiently thick high Z-number materials
 - Lead (Pb), tungsten (W), depleted uranium (U)

ALARA:

- Concept that all radiation exposure should be kept as low as reasonably achievable
- Social and economic conditions taken into account
- Geiger Counter (GM) used to detect radiation.

Cell Types & Radiosensitivity:

- Little or no mitosis=low radiosensitivity
 - o CNS
 - Sense organs
 - o Adrenal module
- Low mitotic rate=moderate radiosensitivity
 - \circ Liver
 - \circ Thyroid
 - Vascular endothelium
 - Connective tissue
- Frequent mitotic rate=high radiosensitivity
 - Epidermis
 - Intestinal epithelium
 - o Bone marrow
 - o Gonads
 - o Stem cells
- Contaminated items should be stored for *at least* 10 ½-lives before release from storage.